Complex Particle and Light Fragment Emission in the Cascade-exciton Model of Nuclear Reactions
نویسنده
چکیده
A brief description of our improvements and refinements that led from the CEM95 version of the CascadeExciton Model (CEM) code to CEM97 and to CEM2k is given. The increased accuracy and predictive power of the code CEM2k are shown by several examples. To describe fission and light-fragment (heavier than He) production, the CEM2k code has been merged with the GEM2 code of Furihata. We present some results on proton-induced fragmentation and fission reactions predicted by this extended version of CEM2k. We show that merging CEM2k with GEM2 allows us to describe many fission and fragmentation reactions in addition to the spallation reactions which are already relatively well described. Nevertheless, the current version of GEM2 does not provide a completely satisfactory description of complex particle spectra, heavy-fragment emission, and spallation yields. We have initiated another approach to describe fission, complex particles and fragment emission by developing further our CEM2k code addressing specifically these problems. In this effort, we have developed our own universal approximation for inverse cross sections. We have also developed new routines to calculate Coulomb barriers and widths of emitted particles and to simulate their kinetic energy using arbitrary approximations for the inverse cross sections. To describe fission-fragment production, we have incorporated into CEM2k a thermodynamical model of fission by Stepanov. This extended version of CEM2k allows us to describe much better complex particle emission and many fission fragments, but it is still incomplete and needs further work.
منابع مشابه
Merging the Cem2k and Laqgsm Codes with Gem2 to Describe Fission and Light-fragment Production
We present the current status of the improved Cascade-Exciton Model (CEM) code CEM2k and of the Los Alamos version of the Quark-Gluon String Model code LAQGSM. To describe fission and light-fragment (heavier than He4) production, both CEM2k and LAQGSM have been merged with the GEM2 code of Furihata. We present some results on protonand deuteron-induced spallation, fission, and fragmentation rea...
متن کاملExtended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems
An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the lig...
متن کاملModeling Fission in the Cascade - Exciton Model
Recent developments of the Cascade-Exciton Model (CEM) of nuclear reactions to describe high energy particle induced fission are briefly described. The increased accuracy and predictive power of the CEM are shown by several examples. Further necessary work is outlined.
متن کاملStatistics of Exciton Emission in a Semiconductor Microcavity: Detuning and Exciton-Exciton Effects
We consider the interaction of quantum light with an ideal semiconductor microcavity. We investigate photon statistics in different conditions and the presence of detuning and exciton-exciton interaction. We show that in the resonant interaction and absence of the exciton-exciton interaction, the state of the whole system can be considered as coherent state. According to our results, it turns...
متن کاملImproved Cascade-Exciton Model of Nuclear Reactions
Recent improvements to the Cascade-Exciton Model (CEM) of nuclear reactions are briefly described. They concern mainly the cascade stage of reactions and a better description of nuclei during the preequilibrium and evaporation stages of reactions. The development of the CEM concerning fission is given in a separate talk at this conference. The increased accuracy and predictive power of the CEM ...
متن کامل